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Abstract. A theoretical and experimental analysis of the heat conductivity in metal–dielectric
point contacts is given. The contribution of the phonon diffraction effects to the heat conductivity
is investigated. The phonon heat transport through the point contacts is measured from 0.1 K to
100 K using the anvil–needle technique. In KBr–KBr and KBr–Cu point contacts, substituting a
Cu needle for the dielectric cold edge does not disturb the heat conductivity pattern. Meas-
urements for Si–Cu point contacts reveal well-defined diffraction maxima of reduced heat
conductivity at temperatures in the range 0.5 K–1 K.

1. Introduction

Point contacts (PCs) with dimensions smaller than the scattering length of the charge and
heat carriers have been intensively investigated in recent years [1]. First, conductive PCs
with ballistic electron conductivity were studied [2, 3]. The non-linearity of the current–
voltage characteristics of such contacts is the basis of the point-contact spectroscopy of
phonon states in metals [4].

A variety of techniques were developed to obtain PCs [1]. The spear–anvil [5], cross-
wedge [6, 7] and break-junction [8, 9] techniques are suitable for the investigation of
electron and phonon transport in PCs. In PCs, electrons and phonons cannot flow through
the surface to the vacuum outside of the contact.

The specific character of transport phenomena in point contacts is governed by how
easy it is to create a strongly non-equilibrium state of the electron–phonon system in the
constriction region. In a traditional treatment [1], one just applies a potential difference to
the edges of the contact. In this case the electron system usually turns out to be strongly
non-equilibrium. The phonon system is slightly excited, to the extent of undergoing some
degree of interaction with the electrons, which is usually rather small in the contact. Like
applying a voltage, keeping the edges at different temperatures can also change the situation
significantly. If a temperature difference is established across the contact, the phonon system
becomes strongly non-equilibrium, too.

A non-equilibrium phonon system can be realized in PCs if the size of the contact
(d) is small compared with the phonon–phonon relaxation length(lph−ph). Ballistic phonon
transport arises in PCs if the phonon quasimomentum relaxation length(l) is large compared
to the contact diameter(d).

In this paper we consider the situation in which the bulk edges of the contact are kept
at different temperatures,T2 and T1. The peculiarity of such contacts is the existence of
phonon and electron groups in the region of the contact whose distribution functions are
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characterized by different temperaturesT2 andT1. An average temperature in the contact
cannot be established because the degree of non-elastic interaction is small(d � lph−ph).

We shall begin with a brief theoretical consideration of ballistic transport of phonons
in dielectric point contacts, and then we shall gradually take into account the influence of
different mechanisms of phonon scattering.

In this paper we present an application of a technique based on highly stable point
contacts; it involves using metal–dielectric point contacts. The low-temperature heat cond-
uctivity data give clear pictures of the phonon diffraction in PCs, from which estimates of
the point-contact-geometry parameters can be obtained. We show that the preparation of
PCs by applying pressure gives rise to a polycontact structure of the contact region when
the heat conduction between contacting edges is realized through a number of parallel PCs.

Different regimes of the heat conductivity were obtained by varying the pressure applied
to the contact. If the pressure is insufficient to produce stable polycontacts, the contact
through some of the weak junctions is lost when the temperature increases. On the other
hand, in the stable PCs produced by applying higher pressure, additional phonon scattering
results from the substrate lattice distortions in the contact region.

Figure 1. A schematic diagram of a point contact in the form
of a cylindrical short-circuit in the vacuum gap between two
surfaces.

2. Ballistic phonon transport in point contacts

2.1. The geometrical optics approximation

We model the point contact between two dielectrics as a short bridge (figure 1), whose
dimensions are all small compared with the phonon–phonon and phonon–impurity scattering
lengths in a bulk sample. When the contact size (d or L, whereL is the contact length, as
shown in figure 1) does not exceed 100 nm, this condition is as a rule easily met at low
temperatures that are small in comparison with the Debye temperature2D. In this section,
the dimensions of the contact are assumed to be macroscopic relative to the characteristic
elastic phonon wavelengthλ (the geometrical optics approximation).

It is assumed that the bulk edges of the contact are at different temperatures,T2 andT1.
A distinctive feature of the ballistic regime of the phonon transport in such a point contact
is that phonons with temperaturesT2 andT1 will exist in the region of the contact. Because
no collisions occur in the contact, an average temperature cannot be established.

The system of equations describing the phonons in a dielectric PC consists of a kinetic
equation for the distribution function of the phonons,N(k, r) (k is phonon wave vector,r is
the point to which the phonon distribution functionN is related), and boundary conditions,
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which take into account the difference between the temperatures in the two contact edges
and the phonon transport in the contact interface.

Since the heat transport in the dielectric PCs is realized through two non-interacting
phonon groups whose distribution functions are determined by the temperaturesT2 andT1

of the bulk edges of the contact, the ballistic heat fluxQ̇B(T2, T1) carried by the phonons
can be represented by the relation [10]

Q̇B(T2, T1) = h̄S0

2(2π)3
∑
α

∫
uαz >0

dk ωα(k)|uαz |Dα
12[N2(ω

α(k), T2)−N1(ω
α(k), T1)]. (1)

Here S0 is the contact area, thez-axis is normal to the contact plane,k is the phonon
wave vector,ω(k) is the frequency–wave-vector relation for phonons,u = ∂ω(k)/∂k is
the group velocity, andα is the phonon spectral branch index.

If the phonon distribution functions at the bulk edges are equilibrium functions, we
should put

N1 = nP (ω, T1) = [e(h̄ω/T1) − 1]−1 N2 = nP (ω, T2) = [e(h̄ω/T2) − 1]−1

wherenP is the Planck distribution function. Equation (1) contains the coefficientD12(k)
of the phonon energy transfer from edge 1 to edge 2, andω(k) is the expression for edge 1.

The coefficientDα
12(k) is determined by the properties of the crystal lattices of the

edges, and can be calculated by considering the problem of transfer of an elastic plane
wave through the infinite planar interface of the two media [11, 12]. The incident plane
wave in edge 1 produces, at the contact interface, three excited wave modes of indexβ in the
edge 2. We should considerDα

12(k) as a sum over these branches. Note that in equation (1)
the frequencyω(k) andDα

12(k) are for the arbitrary edge 1. This representation is valid
owing to the useful reciprocity theorem for phonon transitions at ideal interfaces [12]. This
theorem states that the power transition coefficient is the same for the direct transition from
the wave modeα in edge 1 to the wave modeβ in edge 2 (that is, 1, α ⇒ 2, β) as for the
reverse transition (that is, 2, α ⇒ 1, β).

In the low-frequency region, for which a model of acoustic mismatch [11] can be used,
Dα

12(k) does not actually depend on the frequency. In the case of the contact of two identical
media, one should chooseDα

21(k) = 1 in the geometrical optics approximation.
At low temperatures, only the low-frequency oscillations are excited, and the frequency

can be represented in the linear approximation:ω(k) = u · k, and for the heat flux we get

Q̇B(T2, T1) = π2S0kB

120h̄3 (T
4

2 − T 4
1 )
∑
α

(uα)−2Dα
12. (2)

The behaviour of the point-contact heat flux at low temperatures is similar to that
obtained by Khalatnikov [13] and Little [11], who dealt with the thermal resistance between
two media. The temperature jump can be realized not only in point contacts, but also in
systems in which the phonon scattering at the boundary between two media is stronger than
the thermal resistance in the bulk [14]. Such an effect was observed for the first time in
Kapitza’s experiments on heat exchange between superfluid helium and bulk metal [15].
It should be noted that the presence of two media is not required for the formation of a
point-contact temperature jump. It can be stated that this jump emerges due to the scattering
of phonons at the boundaries of the vacuum gap forming the point contact.

The low-temperature dependenceQ̇(T2, T1) ∼ T 4 may serve as an experimental criterion
for the realization of the geometrical optics approximation for the ballistic transport of
phonons in point contacts.

Model calculations for two fcc lattices in contact [16] show that the simpleT 4-law
should be valid for the heat flux even if the temperature approaches the region in which
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the Debye approximation can be applied. However, the thermal conductivity of real point
contacts can depend upon the temperature in a more complicated way.

2.2. The diffraction regime of phonon transport

Low-temperature experiments [17] show that, as a rule, the temperature dependence of
Q̇(T2, T1) has a complex form:

Q̇(T2, T1) ∼ F(T )(T 4
2 − T 4

1 ) (3)

where the functionF(T ) has a sharp peak atT ∼ 1 K. Since this phenomenon also occurs in
homogeneous contacts between identical materials, it can naturally be assumed that the low-
temperature anomalies appear due to violation of the geometrical optics condition(d � λ).
Indeed, since the characteristic wavelength of phonons at a temperatureT can be estimated
asλ = a2D/T (a is the lattice constant), we can easily obtain the value of the temperature
Tdif at which the conditiond ∼ λ is satisfied: Tdif ∼ 2Da/d. For a contact of size
d ∼ 102 nm, we obtainTdif ∼ 0.1–1 K. At Tdif and at lower temperatures, we cannot
consider phonon transport in the geometrical optics limit, since the diffraction of elastic
waves at the point contact becomes significant.

Let us consider the ratio of the energy fluxes with and without the diffraction effect
as the energy-transfer coefficientD(k) in a homocontact. We calculate the energy flux in
the approximation of a continuous isotropic medium, considering harmonic oscillations of
the displacement vectoru(r)e−iωt (where t is the time) under the condition|u| ⇒ 1 if
r ⇒∞. In the simplest case of an isotropic medium, the elastic modulus tensor is defined
by the velocities of the transverse and longitudinal waves. In the case of normal incidence
of waves at the contact aperture, the conversion of phonon branches does not occur, and
the energy-transfer coefficientD(k) averaged over the period of oscillation can be written
in the form (we omit the branch index)

D(k) = (S0k)
−1
∫

dS0 Im(u∗k(r)∇uk(r)). (4)

The amplitudeu satisfies the wave equation

−∇uk(r) = k2uk(r). (5)

Here the subscriptk corresponds to the solution of the equation for an incident plane wave
with wave vectork.

It is convenient to present the solution of the wave equation as a sum of normal modes
corresponding to the boundary conditions. In the case of three-dimensional contact, the
expression for the energy-transport coefficient averaged overk-vector orientations is [18]

Dα(k) =
(

4

kd

)2∑
µ,ν

T αµ,ν(k). (6)

The transition probabilityT αµ,ν(k) of the propagating mode(µ, ν) is in the form of a
step in the interval 06 T 6 1. The sum runs over the total number of modes. The
mode transmission through the contact(T αµ,ν(k) ⇒ 1) occurs approximately each time the
parameterkd increases by 2. This result is analogous to Landauer’s formula [19] for the
electric conductance of a ballistic contact.

The boundary condition for wave reflection at free surfaces forming the contact is
significant. Under elastic reflection, the Neumann-type condition admits non-zero values
of the displacement at the contact surface [18]. For planar contact geometry, the variation
principle applicable to Neumann’s problem leads to almost complete transmission of the
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wave through the aperture [20]. A contact in the form of a channel with absolutely rigid
walls is simulated using the ‘spherical flow’ model [21]. If the frequency of the incident
wave coincides with the frequencies of the longitudinal vibrations of the channel, the result
is an effective transmission of the wave energy at the resonant frequencyωR of orderπu/L.
In the case of a channel with absolutely rigid walls, which satisfies the Neumann condition,
the energy-transmission coefficientD(k) has a number of diffraction maxima [18]. The low-
frequency maximum atk ∼ π/L is of the largest amplitude. The value of the temperature
Tdif at which the diffraction effect leads to increasing of the point-contact heat conductivity
is of order2Da/L.

A strong attenuation of the waves at the contact surface can be described by requiring
that the displacement at the surface be equal to zero (Dirichlet’s condition). Apertures
[22–24] and channels with wave attenuation at the surface [25–27] have been studied in
great detail in connection with the problem of quantum-mechanical ballistic transport of
electrons in contacts. Since low-frequency oscillations cannot propagate in these channels
for k < 1/d, the effective energy transmission does not appear in this case.

For the thermal flux through the contact, neglecting the branch conversion, we obtain
from (1) and (6)

Q̇(T2, T1) =
(
h̄

2π

)∑
α

∫ ∞
0
ω dω tα(ω)[N2(ω, T2)−N1(ω, T1)] (7)

wheretα(ω) is the sum over normal oscillations:

tα(ω) =
∑
µ,ν

T αµ,ν(k(ω)). (8)

In the limiting case in which the thermal flux is transported by monochromatic phonons
with distributionN1(ω) = nδ(ω − ω0) (wheren is a coefficient,ω is the current phonon
frequency andω0 is the fixed monochromatic phonon frequency) andN2 = 0, we arrive at
the simple formula

Q̇(T2, T1) = n
(
h̄ω0

2π

)∑
α

∑
µ,ν

T αµ,ν(k(ω0)). (9)

Here, the subscriptsµ and ν are the numbers of transverse vibration modes in a contact.
Note that in this simple case the phonon heat flux is quantized in units of ¯hω0/2π .

Figure 2 shows the result of the reduced-phonon-energy-flux calculation in the ‘spherical
flow’ model for a contact with absolutely rigid walls. The lattice is assumed to be cubic.

3. Phonon scattering in point contacts

3.1. Phonon–lattice-distortion scattering

The review presented by Swartz and Pohl [14] leads to the conclusion that phonon scattering
by structural imperfections in the lattice near the contact interface can result in aT x-law,
wherex < 4 for low-temperature phonon flow. The interface disorder can play a role in
the point-contact heat conductivity [28].

We can estimate the extent of departure from the ballistic regime and analyse the phonon
scattering mechanism in the contact by assuming that the phonon transport becomes diffusive
with an effective phonon quasimomentum scattering lengthl(T ) < d. In this case, the
thermal flux through the contact decreases by a factorl/d as compared to that in the
ballistic regime. A more realistic model takes into consideration the fact that the phonon
scattering lengths may be different at different edges of the contact (l1 and l2 respectively,
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Figure 2. The reduced-phonon-energy-flux calculation in the ‘spherical flow’ model for a contact
with an absolutely rigid surface. The contact diameterd = 32a, wherea is the lattice constant.
The length-to-diameter ratio of the contact,L/d, takes the values 1.5 (1), 2.5 (2) and 5 (3).

and analogous lengths for the contact edges). Considering the energy balance of the phonon
transport across the contact interface under the assumption of elastic phonon scattering, we
can find the correction factorG for the integral in formula (1) for the thermal flux, which
describes the transition to the diffusive regime:

Gα = 32

3π
d−1

(
Dα

12

lα1
+ D

α
21

lα2

)−1

. (10)

Here D12 and D21 are the phonon energy-transfer coefficients averaged overk-vector
orientations.

3.2. Phonon–electron scattering in metal–dielectric PCs

If a metallic needle is used as one of the edges, the effect of the electronic system of the
metal on the heat transfer in a PC has to be analysed [29]. The electron mechanism of
heat transfer in PCs works only in the thermal bottleneck situation, where heat removal by
phonons is hampered. When the phonon transport is not ballistic, multiple phonon–electron
scattering should be included. We denote byTd andTm the temperatures of the dielectric
and metallic edges, respectively. In our problem,Tm denotes the temperatures of the phonon
and electron systems of the bulk metal, which are equal because a small heat flux through
the PC cannot disturb this equality. Suppose that the phonon transport in a metallic edge
is hampered due to the small elastic relaxation lengthlm of the phonon quasimomentum
(lm < d).

If we assume that, owing to sufficiently high acoustic impedance of the metal,
Dd/l � Dm/lm, and consider the case whereTd � Tm = 0, we arrive at the expression
for the phonon heat fluẋQdm in metal–dielectric PCs:

Q̇dm(Td, 0) = Q̇(Td, 0)

[
1+ d

la(Td)

]
. (11)

Here the lengthla has a clear geometric meaning: there is anla-wide region at the metallic
edge within which the injected phonons are attenuated, andQ̇ is the flux in dielectric–
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dielectric PCs of similar acoustic properties. Equation (11) shows the phonon–electron
contribution to the phonon flux. This characteristic inelastic phonon attenuation length is
determined by the phonon–electron scattering lengthlph−e(Td) = aεF /Td � d (whereεF
is Fermi energy of the metal), andlm:

la = (lph−elm)
1/2. (12)

Equation (11) is for the realistic case of a weak bulk attenuation of phonons, when
lm < d < la. In this case, the contribution of the bulk phonon–electron scattering does
not affect the heat conductivity of a PC. This result is important, because it enables us to
study solely the mechanism of phonon heat transport, with the help of metal–dielectric PCs.

3.3. Phonon–phonon scattering in a point contact

The common scheme for the analysis of phonon–phonon scattering [30] in homogeneous
bulk samples implies that normal processes guarantee the drift form of the phonon
distribution. The Umklapp processes are taken into account in perturbation theory under
the assumption that the inequalitylU � lN is satisfied (wherelU and lN are the scattering
lengths of the Umklapp and normal processes).

CalculatingN(k) for the point contact is a spatially inhomogeneous problem, and the
homogeneous drift solution is inapplicable at least until the conditionlN � d satisfied,
which is possible only for ‘large’ point contacts(d > 103 nm) for T > 2D/5.

In the case of weak phonon–phonon scattering in the point contact, the correction to the
ballistic thermal conductivityQ̇(0) has the form

Q̇(1) = −Q̇B

[
d

lcN
+ d

lcU

]
. (13)

The expressions for the point-contact scattering lengthslcN and lcU containK-factors
depending on the directions of the phonon group velocities, which imposes additional (as
compared to the case for the bulk sample) limitations on the type of scattering process [31].

For this reason, the decomposition process T′′ ⇒ T + T′ involving long-wavelength
phonons, which is permissible in the bulk material, is not possible in the point contact
(here and below, T and L denote the transverse and longitudinal branches of the phonon
spectrum). Normal processes of the type L⇒ T+ T′, T⇒ T1+ T2 and T⇒ T′ + L make
contributions toQ̇(1), since one of the velocity vectors in them can be antiparallel to the
other two vectors.

For small temperature differences in the contact, the estimated lengths for normal and
Umklapp processes practically coincide with the results for the bulk sample. Since the
inequality lU � lN is satisfied forT > 10 K, we can assume that the main contribution to
the low-temperature thermal resistance of the point contact comes from normal scattering
processes.

In the work [32], NaCl–NaCl point contacts with lower heat conductivity were obtained;
in these contacts, there was considerable phonon scattering by lattice distortions (with the
characteristic scattering lengthl < d). In this case the inelastic scattering has an effective
length estimated aslin ∼ (llph−ph)

1/2. Here lph−ph is the phonon–phonon scattering length
for the undisturbed lattice. For smalll, i.e. whenlin ∼ d, inelastic scattering can affect the
temperature dependence of the heat flux considerably.
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3.4. Phonon transmission through an impurity layer

Some anomalies in point-contact heat conductivities have been interpreted as resulting from
the presence of a weakly bonded impurity layer at the point-contact boundary [33–35].
In the presence of an intermediate boundary layer weakly bonded to the contact edges,
there can be a resonance heat-transfer mechanism. Such a mechanism can be described in
the terms of the ‘capillary’ theory of phonon transmission through impurity layers which
are monatomically thick [34, 35]. Such a system of impurity atoms is characterized by
weakly dispersed vibrations of the low-resonance frequencyω0. Note that the amplitudes
of the impurity layer displacements are much larger than those of the contacting media
surfaces. The resonant frequency dependence of the phonon energy-transmission coefficient
D produces a maximum of the functionF(T2, T1). The resonance frequency is connected
to the position of the temperature maximumTmax by the relation ¯hω0 = 3.89 Tmax .

3.5. Non-linear dynamics of a weak point contact

The experimental data show that the creation of PCs by applying pressure leads to
polycontact structure of the contact region when the heat conduction between contacting
edges is realized through a number of parallel contacts (see section 5). At the contact
interface, in addition to the point contacts with strong coupling, there are a large number
of microcontacts with weak coupling. As a model of the weak contact, we consider a
nanometre-scale tip on a contact edge surface. This tip can push the opposite contact edge.
The phonon propagation causes the tip to vibrate. The tensile force in the tip–opposite-edge
interface is caused by the adhesion between the tip and the opposite edge.

The dynamical regime of the system including the tip–plate contact is an area whose
theoretical [36–38] and experimental [39–41] study is well developed. The realization of
the dynamical regime is controlled by the ratio of the characteristic frequency of the surface
vibrators(ω) and the resonance frequency of the tip(ωR). In the linear regime, the tip acts
as the waveguide for the vibrations of the contact edges. If the characteristic acceleration of
the contact edge exceeds the acceleration of the tip vibrations, this means that the contact
is lost. The motion of the tip in this case is formed by the series of impacts between the
tip and the opposite edge. This non-linear regime includes aperiodic ‘bouncing’ as well as
vibrations which are subharmonic relative to the exciting frequencyω.

In the case of the weak contact, the characteristic of the longitudinal low-frequency
tip oscillations isωR ∼ πu/L, whereL is the length of the tip [18]. The characteristic
frequency of the surface vibrations at a temperatureT can be estimated asω ∼ 2πuT/a2D

(a is the lattice constant). With the increase of the parameterω/ωR, the regime of non-
periodic tip bouncing occurs for the weak junctions. This effect should be significant if
T/Tdif > 1.

4. Measurement of the phonon heat flux through a point contact

4.1. The adiabatic method for point-contact heat-flux measurements

A simple method for measuring the heat flux through a dielectric point contact has been
presented [42]. Using this method, the heat fluxes through NaCl–NaCl [42, 32, 43] and
KBr–KBr [44] point contacts were investigated. A technique based on highly stable point
contacts was presented, which involves using metal–dielectric point contacts [33].

The experimental scheme is described in detail in reference [32]. Point contacts were
created between two dielectric single crystals (or between dielectric crystals and metallic
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tips). The bottom single dielectric crystal was suspended in a vacuum under adiabatic
conditions while the top single crystal (or a metallic tip) was glued to a copper flange.
This flange was in contact, through a copper heat conductor, with a reservoir filled with
liquid helium at a temperatureT1 of 4.2 K. The clamping force of the contact edges, and
thereby the contact diameterd of the point contact, could be varied by regulating the clamp
externally.

The bottom edge was heated up to a temperatureT2 of approximately 80 K with the help
of an electric heater. After the heater was switched off, the cooling curve of the suspended
bottom crystal was measured. The time dependence of the bottom crystal temperatureT2(t)

was found, and the derivative dT2/dt was calculated as a function of temperature with the
help of numerical differentiation. Using the thermodynamic definition of the bottom crystal
heat capacityC(T2), the heat fluxQ̇(T2, T1) is

Q̇(T2, T1) = C(T2)

(
dT2

dt

)
. (14)

The experimental method described above makes it possible to measure with high
sensitivity (<1%) the heat flow through a point contact between dielectrics and between
a dielectric and a metal tip. In the latter case the Cu needle was produced by the same
method as is used to make the needles for metallic PCs [1].

Figure 3. The reduced heat-flux conductivity measured in a Si–Cu point contact. The estimates
from the ‘spherical flow’ model ared = 30 nm for the PC diameter andL/d = 4.5.

4.2. The low-temperature modification of the anvil–needle technique

In the low-temperature experiments (T2 ∼ 0.1 K–10 K), the PCs were made by mounting a
single crystal of high-quality Si on three sharp tips, one of which was made of Cu (OFHC),
and the other two of Vespel. The heat conductivity of Vespel is very low, and does not
contribute to the heat conduction significantly. Similarly, radiation does not provide a
significant contribution to the heat conduction. The Cu tip was etched shortly before the
PC was formed in order to remove oxide layers. A temperature sensor made from an
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NTD-doped natural Ge crystal was glued onto the Si surface with Araldite; the leads were
superconducting wires of diameter 50µm.

The Si crystal was heated up to 10 K using the temperature sensor glued to it. After
the heating, the Si crystal was allowed to cooled down by means of the heat flux to the
PC formed between the Si surface and the Cu tip. The time dependence of the Si sample
temperature was measured, and the heat flux was calculated using the Debye law for heat
capacity.

The electrical resistivity of the Si crystals used, at room temperature, was 5 k� cm−1.
The flat surfaces of Si were cut with a diamond saw. The average surface roughness was
0.7µm in the case of a surface that was not polished and about 20Å in the cases of polished
surfaces.

5. Experimental results on point contacts

5.1. Heat conductivity in Si–Cu point contacts over the interval 0.1 K–10 K

Figure 3 shows the temperature dependence of the heat flux through a Si–Cu PC over
the temperature interval 0.1 K–10 K. This experiment reveals the well-defined peak of the
reduced thermal conductivityF(T2) atT2max = 0.5 K. This maximum can be attributed to the
diffractional effect. The reduced heat conductivity at the plateauT2 > 3 K is characteristic
for phonon transport in the geometrical optics limit. The different peaks atT2 > 2 K
demonstrate the polycontact geometry. The estimates from the ‘spherical flow’ model are
d = 30 nm for the PC diameter andL/d = 4.5 for the contact length.

Figure 4. The temperature dependence of the heat flux through Si–Cu point contacts over the
temperature interval 4.2 K–20 K, measured by the adiabatic method.

5.2. Heat conductivity through Si–Cu point contacts over the interval 4.2 K–25 K

Figure 4 shows the temperature dependence of the heat flux through a Si–Cu PC over the
temperature interval 4.2 K–25 K, measured by the adiabatic method. These contacts are
characterized by the ballistic heat condition. It is readily seen that the heat flux represents
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a linear function ofT 4
2 except in the low-temperature rangeT2 < 10 K. Estimation based

on the geometrical optics model gives a value of the effective PC diameter in the region
d(eff ) ∼ 5000 nm. Note that in a polycontact geometry the effective diameter is related
to the main diameter of a single contact(d) asd(eff ) = d√N . HereN is the number of
single contacts in a polycontact.

Figure 5. The temperature dependence of the heat flux through KBr–KBr and KBr–Cu point
contacts over the temperature interval 4.2 K–25 K, measured by the adiabatic method.

5.3. Heat conductivity through KBr–KBr and KBr–Cu point contacts over the interval
4.2 K–25 K

We investigated more than 50 KBr–KBr and KBr–Cu point contacts by the adiabatic method.
KBr single crystals were prepared by the Czochralski method at the Institute of Single
Crystals of the Ukrainian National Academy of Science in Kiev. The purity of the samples
was 99.99%. The typical data for the temperature dependences of the heat fluxes through
KBr–KBr and KBr–Cu point contacts are very similar, and are shown in figures 5 and 6.
They indicate a nearly ballistic regime of phonon heat flux for both types of PC over a
certain range of temperatures (figure 5).

Deviations from the ballistic heat flux are made clearer when the data are plotted in
reduced coordinates (figure 6). The first deviation is the significant monotonic reduction of
the PC heat conduction over the temperature regionT2 > 10 K. This reduction is evidence
of strong phonon scattering in the diffusive regime of the phonon transport. The temperature
dependence of the phonon scattering length(l) is estimated to be a power lawl(T2) ∼= T −s2 ,
wheres varies in the range 0.5< s < 0.7. Such a weak temperature dependence is typical
of phonon scattering due to statistical strain fields of dislocations [45]. In view of the fact
that all of these contacts were obtained by the nail-and-anvil technique, the emergence of
stress fields in the contact region seems natural. Secondly, the heat conductivity in reduced
coordinates shows a low-temperature maximum atT2 = 5.7 ± 0.2 K. This anomaly is
similar to that observed by Koestleret al [46]. The possible connection of this anomaly
with resonant transport through layers of weakly bound impurities was discussed in [33–
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Figure 6. The temperature dependence of the reduced heat flux through KBr–KBr and KBr–Cu
point contacts over the temperature interval 4.2 K–25 K.

35]. This anomaly is highly reproducible and has similar features for KBr–KBr and KBr–Cu
point contacts. Thirdly, the strong temperature dependence of the reduced heat flux over
the interval 5 K< T2 < 10 K is thought to be due to the intensive Raleigh scattering of
low-frequency phonons.

6. Discussion

The specific character of the transport phenomena in point contacts is governed by how
easy it is to create a strongly non-equilibrium state of the electron–phonon system in the
constriction region. In a traditional treatment like the one discussed in [1], one just applies a
potential difference to the edges of the conducting contact. In this case, the electron system
usually turns out to be strongly non-equilibrium. The phonon system is slightly excited, to
the extent of interacting with electrons to some degree, which is usually rather small in the
contact. The situation can be significantly changed if, in addition to a voltage being applied,
the edges are kept at different temperatures. If a temperature difference is established across
the contact, the phonon system becomes strongly non-equilibrium, too.

The first investigations of non-equilibrium phonon systems in metallic point contacts
were connected with the phonon generation in the contact region [48]. Non-equilibrium
phonons emitted by electrons in the current-carrying state may be reabsorbed in the contact.
The ‘heating’ of phonons in the point contact results in non-spectral corrections to the
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current–voltage characteristics—in particular, to the background in the point-contact spectra
[7]. Non-equilibrium phonons lead to the specific frequency dependence of the non-linear
part of the contact conductivity.

The relaxation of electrons, accelerated in the applied voltage, leads to the establishing
of an effective temperature of the phonon system and to the appearance of directed flow of
non-equilibrium phonons in symmetrical conducting contacts [49–52]. The consequence of
this is analogous to the Peltier effect: at the edges of the symmetrical homogeneous point
contact, a difference of temperatures arises, which depends non-linearly on the applied
voltage. The concrete nature of this dependence is connected with the contribution of
Umklapp processes to the phonon–electron scattering.

A point heat source causes the deviation of the temperature from the equilibrium value
of the thermostatically controlled edges. The temperature is determined away from a point
contact at distances where relaxation of non-equilibrium electrons and phonons takes place.
If we consider the temperature distribution in this region, the point contact can be regarded
as a point source of heat. At low temperatures, the phonon scattering length in the contact
region may become longer than the distance between the point contact and the point at which
the temperature is measured. In this case, the temperature is not a well-defined quantity.
This case is considered in detail in [53]. The peaks of the temperature dependence [51, 52]
can be caused by the effective thermalization of the phonons with maximal frequency.

It can be concluded that the ballistic phonon transport is realized in dielectric point
contacts as well as in point contacts between a metal and a dielectric. It is shown that the
phonon thermal conductivity of a contact satisfies a formula analogous to Landauer’s formula
for electron conductivity. However, the emergence of diffraction effects is determined by
the conditions of interaction of elastic waves with the crystal surface.

The analysis of point-contact heat conductivity shows that the suppression of phonon–
electron scattering within a PC permits one to use a metallic edge to investigate the
phonon transport. The resulting experimental results were reproducible. Experimental
heat-flux investigations on KBr–KBr and KBr–Cu PCs demonstrate that the point-contact
phonon scattering is determined by the subsurface lattice distortions in dielectric crystals.
Investigation of the thermal conductivity of a point contact will certainly give unique
information about the state of the crystal surface. Future work should be directed toward
obtaining a contact with a controllable structure. ‘The Kapitza effect is still filled with
surprises’ [47], and similar consideration can be applied to the phonon transport in point
contacts.
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[17] Štef́anyi P, Fozooni P, Lea M J, Saunders J, Feher A, Zaboj R and Shkorbatov A G 1993Phonon Scattering

in Condensed Matter VIIed M Meissner and R O Pohl (Berlin: Springer) p 156
[18] Shkorbatov A G, Sarkisyants T Z, Feher A andŠtef́anyi P 1993Sov. J. Low Temp. Phys.19 881
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